Chemical Fibers International, Dezember 2005, Seite 385

News from Nanoval technology

Nanoval GmbH, Berlin/Germany has entered the nanofiber domain. Their advanced meltblown technology [1-3] now provides spunbond nonwovens at continuous filaments around 1 micron, e.g. 0.5 to 1.8 μ m, d₅₀ = 1.2 μ m (dtex 0.01) in PP, PET in preparation.

A lyocell spunbond pilot plant, believed to be the first one worldwide, is up and running in the Thuringian Textile & Plastic Research Institute (TITK), Rudolstadt/Germany at 30cm web width and both partners will jointly further develop this technology based on the renewable resource cellulose.

Nanoval has terminated the license

agreement with Neumag, Neumünster/Germany, a member of Saur-

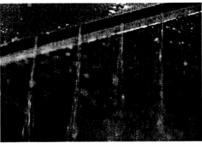


Fig. 2 Spin beam section

er Group, concluded in 2003 [2]. They will market Nanoval technology themselves by focusing on the supply of split-spinning units/spin beams to existing and new plants.

They are enlarging their own pilot plant facilities in Berlin to 60 cm width for R&D, demonstration to clients and small lead production.

References

- [1] Gerking, L., Chemical Fibers International 52 (2002) 424-426
- [2] Chemical Fibers International 53 (2003) 290
- [3] Gerking, L., Chemical Fibers International 54 (2004) 251-262

Fig. 1 Splicing of a monofilament

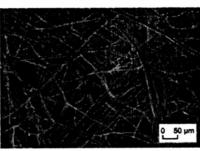


Fig. 3 Spunbond $d_{50} = 6.9 \mu m$

Fig. 4 Spunbond $d_{50} = 1.2 \mu m$